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Abstract—The relationship of multiple factors, such as instream habitat, drainage area, gradient, cumulative effluent, conventional
pollutants, and chemical mixtures, to fish communities was explored at the subbasin, basin, and state level within the state of Ohio,
USA. Two approaches were used: bottom-up, which focused on subbasin- and basin-level relationships within the Great Miami
River, Ohio, and top-down, focusing on relationships across the entire state. Data were provided by the Ohio Environmental
Protection Agency and the U.S. Environmental Protection Agency. These data were integrated via a geographical information
system. Multiple linear regression was used to determine the strength of stressor–response relationships. The greatest amount of
variation of the index of biotic integrity (IBI) and selected metrics was addressed at the subbasin level, followed by the basin and
state level, respectively. Overall, habitat factors were the best predictors and positively related to the IBI and number of fish species.
Chemical factors, such as cumulative effluent, metals, ammonia, and biochemical oxygen demand, were consistently observed as
negative, moderating factors for IBI and fish taxa richness and were the best predictors of the percent of fish observed with
deformities, fin erosions, lesions, and tumors.
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INTRODUCTION

The presence, abundance, diversity, and distribution of fish
communities is dependent on their ability to respond to a va-
riety of physical and chemical factors to which they are ex-
posed. Although the purpose of risk assessment is to estimate
the probability of an adverse effect of a stressor (e.g., chem-
icals) to a specified receiving compartment (e.g., fish com-
munity), risk assessment is typically limited to a single stressor.
Therefore, risk of a stressor that incorporates the interaction
of other, diverse stressors should more accurately reflect reality
and be verifiable. Although this is a long-term goal in risk
assessment, methods for analyzing and assessing the interac-
tion of multiple stressors, such as degraded instream habitat,
ecological constraints imposed by river size and morphology,
and exposure to effluent and chemical mixtures, need to be
developed or refined. Further, the relationships that stressors
impose on receiving water biota (e.g., fish communities) may
be scale dependent. This is of particular importance to lotic
systems, where the potency of a stressor may not be directly
proportional to its proximity to fish sampling stations, but may
be distant or a function of the accumulation of similar stressors
(e.g., chemical mixtures, cumulative exposure to effluent). Be-
fore risk of a particular stressor or multiple stressors can be
estimated, exploration of their relationships to a receiving com-
munity at different geographic scales is needed.

The interaction of multiple stressors with fish communities
in Ohio, USA, were assessed using two different approaches:
bottom-up and top-down. The bottom-up approach focused on
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developing an understanding of the key factors driving the
receiving water ecology at a basin or subbasin level, with
emphasis given to the Great Miami River, located in the south-
west corner of Ohio. The top-down approach attempted to draw
relationships of stressors to fish communities across the entire
state. In essence, the effects of analyzing data sets at three
different levels of scale (subbasin, basin, and state) were in-
vestigated.

METHODS

Data sources

Water chemistry data. Ambient water chemistry data for
the entire state of Ohio were extracted from STORET, a com-
prehensive data collection and reporting database describing
surface and groundwater quality for North American water-
ways [1]. Each monitoring site, or station, in the database
contains water chemistry data keyed by parameter (e.g., NH3,
metals) and other descriptive information. Data extracted for
the study included station name, agency, river reach number,
latitude and longitude, and measured chemical concentrations.
Parameters extracted for the study are presented in Table 1.

Water chemistry data were retrieved for years 1990 through
1996 to overlap the time frame in which the entire state was
monitored for its biotic integrity. The log-transformed median
(M) and 90th percentile (90) concentrations for each water
chemistry parameter per station were determined.

Mixture toxicity. The derivation of the total toxic load of
contaminants at each sampling site was based on the concept
of effects addition. Effects benchmarks for each chemical con-
sidered were based on established U.S. Environmental Pro-
tection Agency water quality criteria. Algorithms used to de-
rive toxic units were summarized in Dyer et al. [2]. Metals
and ammonia were the primary contributors to the mixture



Assessing multiple stressors over large geographic areas Environ. Toxicol. Chem. 19, 2000 1067

Table 1. List of water chemistry, stream habitat, and fish metrics that were used in the study. Water chemistry information was extracted from
the U.S. Environmental Protection Agency’s database STORET, and habitat and fish parameters were obtained from the Ohio Environmental

Protection Agency. M and 90 refer to the median and 90th percentile concentrations per site

Parameters Units or scale STORET no.

Water chemistry
Alkalinity, total (Alktot M or 90)
Aluminum, total (Altot M or 90)
Cadmium, total (Cdtot M or 90)
Carbon, total organic (TOC M or 90)
Carbonaceous biochemical oxygen demand (CBOD), 5 d, 208C (BOD M or 90)

mg/L as CaCO3

mg/L as A1
mg/L as Cd
mg/L as C
mg/L

410
1105
1027

680
80082

Cumulative percent municipal wastewater treatment plant effluent at low 1 mean river flows
(%Effl L or M)

Copper, total (Cutot M or 90)
Dissolved oxygen (DO M or 90)
Hardness, total (Hard M or 90)
Lead, total (Pbtot M or 90)
Manganese, total (Mntot M or 90)

Percent

mg/L as Cu
mg O2/L
mg/L as CaCO3

mg/L as Pb
mg/L as Mn

1042
300
900

1051
1055

Nickel, total (Nitot M or 90)
Nitrogen, ammonia (NH3 or 90)
pH (pH M or 90)
Phosphorus, total (TotP M or 90)
Residue, total nonfilterable (TSS M or 90)

mg/L as Ni
Total (mg/L) as N
Standard units
mg/L as P
mg/L

1067
610
400
665
530

Selenium, total (Setot M or 90)
Silver, total (Agtot M or 90)
Total toxic units (TotTUs M or 90)
Zinc, total (Zntot M or 90)

mg/L as Se
mg/L as Ag
TUs
mg/L as Zn

1147
1077

1092

Habitat
Substrate
Instream cover (Cover)
Channel quality (Channel)
Riparian/erosion (Riparian)
Pool or Riffle

0–20
0–20
0–20
0–10
0–20

Qualitative habitat evaluation index (QHEI)
Gradient
Drainage Area

0–100
ft/mi
mi2

Biological
No. fish species (Species)
Percent deformities, fin erosions, lesions, or tumor anomalies (DELT)
Index of biotic integrity (IBI)

0–100
12–60

evaluation, because too few organic contaminant data were
available.

Habitat and fish data. Habitat and fish data for 1990 to
1996 were provided by the Ohio Environmental Protection
Agency, Columbus, Ohio, USA. During this period each of
the state’s major watersheds was sampled. Typically, the Ohio
Environmental Protection Agency samples each watershed
once every five years. Table 1 includes all of the metrics and
indices used in this study.

A description of the habitat metrics and their use in deriving
the qualitative habitat evaluation index (QHEI) for Ohio is
provided by Rankin [3]. Briefly, the QHEI is derived from six
metrics (capitalized): Substrate, instream cover (Cover), chan-
nel quality (Channel), riparian/erosion (Riparian), Pool/Riffle,
and Gradient. In addition to the six metrics, drainage area was
included as a habitat variable. Scores for the first six metrics
and raw data for gradient (ft/mi) and drainage area (mi2) were
used. The sum of the six metrics is 100, with 100 indicating
the highest quality habitat. Waters with QHEI scores of less
than 45 can be considered limiting to aquatic life, whereas
waters with scores greater than 60 are considered good habitats
[4].

Information on the status of fish communities was obtained
using metrics corresponding to the index of biotic integrity
(IBI) [4]. The IBI is derived from 12 metrics, scored from 1
to 5, with 5 being the highest, most favorable value. Fish were

collected via electroshocking methods. A brief description for
9 of the 12 metrics used in this study follows. The total number
of species (Species) refers to indigenous species only and ex-
cludes introduced species. A high number of darter species
(Darters) is an indicator of good water quality and habitat
conditions, particularly for headwaters and sites suitable for
wading. The percent of round-bodied suckers (Rdsuckpc) is
substituted for Darters in the derivation of the IBI in sites
where boat sampling is required. The number of sunfish species
(Sunfish) refers to all taxa within the family Centrarchidae,
excluding Micropterus spp. and Lepomis microlophus. The
number of sucker species (Suckers) refers to all catostomid
species inhabiting wading and boat sampling sites. The num-
bers of intolerant species (Intols, wading and boat sites) are
used to distinguish streams with high water and habitat quality.
Examples of species included in these categories are: blue
sucker, river redhorse, river chub, silver shiner, stonecat, brin-
dled madtom, and variegate darter. The percent tolerant species
(Tolperc) includes central mudminnow, white sucker, carp,
creek chub, bluntnose and fathead minnows, green sunfish,
and yellow and brown bullheads. The percent omnivores (Om-
nivor, e.g., threadfin shad, carpsuckers, carp, and fathead min-
now) is an indicator of increasing environmental degradation
due to disruption of the food chain. The percent of top car-
nivores (Topcarn, e.g., American eel, rock bass, and large-
mouth and smallmouth bass) is used to designate integrity in
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the upper functional levels of the fish community. The pro-
portion of individuals with deformities, eroded fins, lesions,
tumors, and other abnormalities (DELTs) is used as an indicator
of severe disturbances to the water quality and habitat of the
receiving water. Typically, increased incidences of DELTs are
found downstream of municipal and industrial wastewater dis-
charges [4]. Because of space constraints within this manu-
script, use of two metrics (Species and DELTs) and the IBI
are discussed in the bottom-up approach, whereas all the other
metrics mentioned above were used in the top-down approach.

River network data. River characteristics data were extract-
ed from the U.S. Environmental Protection Agency’s Reach
File 1 (RF1) [5], a hydrologic database of the surface waters
of the United Sstates in geographic information system line
coverage format. In this database, river systems are represented
as uniquely coded stream segments (i.e., reaches), which have
been hydrologically linked to perform navigation for modeling
applications and data retrieval. The database contains 68,000
records for the entire United States, encompassing perennial
streams at a scale of 1:500,000. Extracted data included reach
number, stream name, type, order, and length for all river reaches.

Point source data. Wastewater treatment plant (WWTP)
location data were extracted from the U.S. Environmental Pro-
tection Agency’s Needs Survey [6] and Permit Compliance
System databases (PCS) [7]. The PCS database manages dis-
charge monitoring data and permit compliance for the National
Pollutant Discharge Elimination System. The database con-
tains more than 19 million records describing permitted mu-
nicipal and industrial dischargers. The 1988 U.S. Environ-
mental Protection Agency Needs Survey database describes
approximately 11,500 municipal WWTPs. The biannual sur-
vey is designed to provide the U.S. Congress with an inventory
of existing WWTPs and estimates of future treatment plant
needs. The 1988 survey was used because it was the most
comprehensive and accurate survey at study initiation. Data
extracted for this study included latitude and longitude, and
permit number for each municipal discharger. Duplicate in-
formation (e.g., National Pollutant Discharge Elimination Sys-
tem number) from Needs Survey and PCS databases was elim-
inated. Industrial point sources were also excluded from the
study. A total of 657 Ohio facilities discharging to RF1 river
reaches were included in the final analysis.

Data integration

Biological, chemical, and habitat monitoring sites rarely
occurred at the exact same latitude and longitude. In order to
compare data from each of these data sets in a spatially relevant
manner, an aggregation scheme was required. We established
the spatial relationship through the following steps with ARC/
INFO version 7.0.4 and ArcView GIS 3.0, commercial geo-
graphic information system software developed by the Envi-
ronmental Systems Research Institute (Redlands, CA, USA).

River network. The baseline map for Ohio rivers was the
RF1 file. However, the data do not have network features,
which are essential for establishing river order, upstream–
downstream relationship, and measuring river length from the
head water to the mouth. Further, RF1 river reaches often cross
WWTP discharge points, which poses a major hydrological
and chemical problem because the flows of many streams and
rivers in Ohio are dominated by effluents at mean and/or low
flows. To resolve this, ARC/INFO network functions were used
to create a river network from the RF1 line file. In a network,
line segments with the same river name are grouped into

routes. The total length of a river can then be calculated by
adding lines in the route. Therefore, river mileage at any point
along a river can be calculated and retrieved. River routes were
further divided into segments based on the river hydrologic
features and the location of WWTP discharge points. A river
route was broken into segments based on three criteria: river
confluence, WWTP discharge point on the river, or 2-mi max-
imum. Segments less than 30 m long using these criteria were
combined with the next downstream segment. Implementation
of this segmentation scheme across the state resulted in 5,879
segments, with an average segment length of approximately
1.8 mi. Each segment was assigned a unique identifier, which
was used to compare all monitored data.

Point files. Biological, habitat, and water chemistry files
were converted to ARC/INFO point coverages using ARC/
INFO’s geocoding function to assign each site a location based
on its longitude and latitude values. The point coverages were
then projected to the Albers conic equal-area projection, the
projection used for the river network data.

Spatial aggregation. The ARC/INFO spatial overlay func-
tions were used to assign segment numbers to each point file.
To accomplish this, the nearest distance from each monitoring
site to a river route was calculated and the segment number
on that route was assigned to the site. Monitoring sites located
on non-RF1 (i.e., smaller-order) streams were not incorporated
into the river routing unless located within 1 mi of a larger
river segment included in the routing. For each data type hav-
ing more than one point per river segment, mean values per
metric were obtained from all points.

Cumulative effluent. Cumulative percent WWTP effluent
serves as a surrogate for persistent wastewater contributions
to receiving water quality. To perform this calculation, mean
and critical low (7Q10) stream flow for each river segment
was first extracted from the U.S. Geological Services Gage
database [5]. Percent cumulative effluent was calculated as the
ratio of WWTP flow to stream flow for headwater segments.
For all other segments, WWTP flow included not only con-
tributions from facilities on that river segment, but also con-
tributions from facilities upstream (e.g., main stem, tributaries)
of that segment.

Bottom-up analyses

Study area: Great Miami River. The Great Miami River
watershed (GMR), located in southwestern Ohio, is adjacent
to the Cincinnati and Dayton metropolitan area (Fig. 1). The
GMR drains an area of 5,385 mi2 and has a main stem length
of 170 mi with an average gradient of 3.9 ft/mi [8]. The ma-
jority of the GMR lies within the Eastern Corn Belt Plains
ecoregion, whereas the lower portion flows through the Interior
Plateau. Major tributaries to the GMR include Twin Creek,
Mad, and Stillwater rivers. Upstream of Dayton significant
numbers of reaches of the GMR have been designated as ex-
ceptional warm-water habitat [9]. Other exceptional warm-
water habitat–classified waters in the basin include the Still-
water River and Twin Creek [10]. All other waters in the GMR
basin are generally classified as warm-water habitat. An IBI
score of .50 is used to derive an exceptional warm-water
habitat classification, whereas a score of between 40 and 50
is required for a warm-water habitat classification.

Regression analysis. Viewing the variance of water chem-
istry, habitat, and biological data on maps via ARCVIEW
indicated that spatial clusters of characteristics (subbasins) oc-
curred, which may be important in statistical analysis and in-
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Fig. 1. Location of the Great Miami River (dark gray) and major urban
areas in Ohio, USA.

Table 2. Basin codes and names used for top-down approach for
Ohio, USA

Basin code Name

01
02
03
04
05

Hocking River
Scioto River
Grand River
Maumee River
Sandusky River

06
07
08
09
10

Central Ohio River tributaries
Ashtabula River
Little Beaver Creek
Southeastern Ohio River tributaries
Southwestern Ohio River tributaries

11
12
13
14
15

Little Miami River
Huron River
Rocky River
Great Miami River
Chagrin River

16
17
18
19
20

Portage River
Muskingum River
Mahoning River
Cuyahoga River
Black River

21
22
23

Vermilion River
Wabash River
Mill Creek

Fig. 2. Designation of subbasins within the Great Miami River, Ohio,
USA.

terpretation. Hence, statistical analyses were conducted on the
entire GMR as well as five subbasins: Upper GMR, Lower
GMR, Mad River, Stillwater River, and Twin Creek and other
tributaries (Fig. 2).

Multiple linear regression models to predict IBI, Species,
and DELTs were investigated through a combination of all
possible regressions and forward selection [11]. All possible
regressions was used first to determine the three best (maxi-
mum squared multiple correlation, R2) one-variable models,

the three best two-variable models, and so on, continuing up
to five-variable models. Before the all possible regressions
calculations, certain potential regressors were eliminated from
consideration because they were too frequently unmeasured,
or because 95% or more of their values were equal to the
minimum measured value (at detection limit). The complexity
of the model was determined by examining the progression of
R2 values as a function of model size (increases in model size
were permitted only where R2 was increased by at least 5%).
Up to three models with similar R2 values were subsequently
fit in a forward variable selection process to identify the rel-
ative importance of predictors, partial R2 values, and to allow
inspection of the regression coefficients for biological rele-
vance.

Top-down analyses

Study area: state of Ohio. The top-down approach started
with a cluster analysis of sites throughout the state of Ohio.
The cluster analysis partitioned the sites into groups based on
the Euclidean distance between measurements. The second
step in the analysis was a regression or analysis of variance
to evaluate how factors not used in the clustering process
varied across clusters. Three approaches were used in the clus-
tering of sites. First, sites were clustered using habitat infor-
mation. Variables used in the analysis were QHEI, Drainage
Area, Gradient, median hardness, and median pH. Although
hardness and pH are truly chemical measures, they were used
in this case as parameters that reflect characteristics of the
local geology. The data on these variables were first ranked
and the ranks from each site were then used to cluster all sites.
The number of clusters was varied and then compared to eval-
uate the number of clusters that discriminates the data best.
Stepwise regression analysis was then used to evaluate rela-
tionships between the IBI and a number of water chemistry
variables. The analysis used the raw variables and log trans-
formed variables. Because of the presence of missing values,
a data imputation method was used [12]. The imputation pro-
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Fig. 3. Spatial distribution of key habitat, chemical, and fish community variables within the Great Miami River, Ohio, USA. The size of the
dot is proportional to the amount of the variable.

cedure ensured that sites with partial data were not eliminated
from the analysis.

A second set of cluster analyses was run on the biological
metrics that comprise the IBI. Metrics were first clustered to
produce groups of sites with similar fish community structure.
These clusters were then compared on a number of habitat and
water chemistry characteristics. The analysis was based on the
analysis of variance of physicochemical variables.

Another approach to grouping sites was by combining ba-
sins. In this approach, the basins (Table 2) were first evaluated
using correlations between IBI and the habitat variables. Ide-
ally, the basins would be combined based on similar regression
relationships. However, missing observations made this ap-
proach infeasible. Also, properties of the data such as skewness
and outliers precluded the use of ordinary regression analysis.
To measure the relationship between habitat and IBI, Kendall’s
nonparametric correlation coefficients were computed [13].
Kendall’s coefficient provides a good measure of monotonic
relationships (including linear). The data set was thus reduced
from one involving IBI and habitat variables at each site to
an array of correlations, with one set of correlations for each
basin. The correlation array was also useful for adjusting for
missing values. Some basins (3, 6, 7, 8, 10, 12, 21, and 23)
did not have sufficient data (number of sites , 10) and were
omitted because of insufficient sample size. The basin corre-
lations were then clustered using the average linkage method
on SAS (SAS Institute, Cary, NC, USA). This procedure merg-
es basins into groups based on the average Euclidean distance
between groups. Groups are formed that have similar corre-
lations between habitat and IBI. Cluster identification is then
used as a grouping or class variable to define groups for re-
gression analysis. Stepwise analysis was used to find a set of
regression predictors.

RESULTS AND DISCUSSION

Bottom-up approach

Relationships of habitat and ambient water chemistry to
selected biological indices and metrics for the entire GMR and
identified subbasins were determined via maps and multiple
linear regressions. The QHEI and its metrics were used as
measures of habitat suitability for a robust and diverse fish
community (Fig. 3). The QHEI ranged widely throughout the
GMR basin. In general, the poorest habitat index scores were
found in the headwater reaches of the various major tributaries.
In most situations, modifications due to agricultural practices
(channelization, reduced stream cover, reduced riparian area,
poorer substrates) were identified as the primary causative
factors for reducing the QHEI [6–8]. Poor QHEI scores also
were observed in significant stretches of the Lower GMR,
downstream of Dayton. With the exception of the Mad River,
most streams’ habitat scores increased with increased distance
from the headwater (i.e., increased drainage area). Between
the city of Springfield and the headwater reaches of the Mad
River, the QHEI scores were low because of historical chan-
nelization and reduced cover [14]. In addition, this stretch of
river and the Lower GMR (downstream of Dayton) had little
vertical gradient.

Much of the GMR basin is effluent dominated during mean

and low flow (Fig. 3). The percent cumulative effluent in-
creased from the headwaters of the Stillwater and Mad rivers
to the city of Dayton. Less than 15% effluent at low flow was
calculated along the majority of the Upper GMR, Twin Creek,
and other tributaries. The influence of effluent is quite large
downstream of Dayton, because up to 100% of the flow can
be calculated as effluent during low-flow periods. Consequent-
ly, water chemistry parameters often associated with effluent
discharge, such as biochemiacl oxygen demand (BOD), total
suspended solids (TSS), and NH3 were elevated primarily in
areas receiving a high percent of cumulative effluent. The num-
ber of toxic units (from metals and ammonia) was only ele-
vated in the lowest segments of the Mad River. An inverse
relationship apparently existed with Hardness and %Effluent,
because Hardness was least in river segments receiving high
percentages of effluent. No obvious spatial patterns were ob-
served for Zinc in the watershed.

The greatest IBI scores were found in the Upper GMR,
Stillwater River, Twin Creek, and other tributaries. The lowest
IBI scores were observed throughout most of the Mad River,
headwater regions of the Stillwater and Upper GMR and the
entire Lower GMR. About 45% of the variation in IBI scores
within the entire GMR could be accounted for in a three-
variable model that incorporates QHEI, followed by percent
cumulative effluent at mean flow (%Effl M), median Hardness,
or Gradient (Table 3). Higher IBI scores were associated with
better habitat, whereas effluent had a negative influence. A
near doubling of the regression fits of IBI with water chemistry
and habitat variables was observed by analyzing the data on
a subwatershed basis. About 80% of the variance in IBI within
the Lower GMR was accounted for via a five-variable model.
In this case, habitat factors such as Pool and Channel scores
were the dominant factors, addressing up to 60% of the var-
iance, followed by chemical parameters such as TSS, Hard-
ness, Zinc, Ammonia, and Selenium.

Habitat factors such as Pool, Riffle, and Gradient seemed
to be the primary (and positive) ecological drivers for the IBI
within the Stillwater, Twin Creek, and Upper GMR, addressing
between 45 and 69% of the variation. Ammonia had a negative
influence within the Upper GMR and Twin Creek subbasins.
The TSS, TOC, and total number of toxic units also had neg-
ative relationships with IBI within the Twin Creek subbasin.

Interpretation of the multiple linear regression results from
the Mad River was dubious, because Lead and Zinc concen-
trations and Riffle scores performed opposite to expectations
(i.e., if Lead and Zinc were toxicants then a negative rela-
tionship should have resulted, as also a positive relationship
with good riffle habitat should have yielded a more diverse
fish community, hence an increased IBI).

A similar spatial pattern of the number of fish taxa (Species)
to that of the IBI thoughout the GMR was observed. That is,
the greatest species richness occurred in the Upper GMR, Twin
Creek, and other tributaries. The Mad River and the Lower
GMR contained the least number of fish taxa. Only about 30%
of the variance in Species could be accounted for within the
entire GMR, using a three-variable model incorporating Hard-
ness, Pool, and %Effluent at mean and low flows. A positive
relationship existed with Pool score (as with QHEI and IBI)
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Table 3. Summary of stepwise multiple linear regressions for the Great Miami River (GMR) and subbasins (Lower GMR, Mad River, Twin
Creek and other tributaries, Stillwater River, and Upper GMR). Values represent cumulative coefficients of determination per stepa

Dependent
variable Watershed No.

Step

1 2 3 4 5

IBI GMR 1 QHEI
0.17

2%Effl M
0.40

2Hard M
0.46

IBI GMR 2 QHEI
0.17

2%Effi M
0.40

Gradient
0.44

IBI Lower 1 Pbtot 90
0.21

Pool
0.33

2Channel
0.68

Zntot M
0.77

2TSS 90
0.82

IBI Lower 2 Pool
0.13

2Channel
0.54

Zntot M
0.69

Hard 90
0.70

Hard M
0.82

IBI Lower 3 Pool
0.17

2Channel
0.60

Zntot M
0.62

2NH3 M
0.67

Setot 90
0.81

IBI Mad 1 Pbtot M
0.29

2Riffle
0.54

Zntot M
0.69

2Hard 90
0.80

IBI Stillwater 1 Pool
0.55

DO 90
0.71

2Hard M
0.78

IBI Twin and other creeks 1 Pool
0.45

2NH3 90
0.69

BOD 90
0.76

2TSS M
0.81

IBI Twin and other creeks 2 Pool
0.45

2TOC 90
0.56

2TotTUs M
0.66

BOD 90
0.80

IBI Upper 1 Riffle
0.58

Gradient
0.69

2Nitot M
0.76

2NH3 M
0.82

Species GMR 1 2Hard M
0.12

Pool
0.20

2%Effl M
0.30

Species GMR 2 Pool
0.08

2%Effl M
0.20

%EfflL
0.29

Species GMR 3 Hard M
0.12

QHEI
0.18

%Effl M
0.27

Species Lower 1 2Channel
0.08

Pool
0.32

2NH3 90
0.41

Zntot 90
0.55

Setot M
0.67

Species Lower 2 2Riparian
0.08

2NH3 90
0.13

Zntot 90
0.26

Hard 90
0.43

Gradient
0.65

Species Lower 3 2Riparian
0.08

2TSS M
0.11

2Hard M
0.16

Setot M
0.53

2Drainage Area
0.64

Species Mad 1 Pbtot M
0.34

2NH3 M
0.48

Substrate
0.60

2Hard M
0.68

Species Stillwater 1 Pool
0.25

Cdtot 90
0.45

DO M
0.59

TOC 90
0.74

Species Stillwater 2 Pool
0.25

TOC 90
0.44

DO M
0.63

Zntot M
0.72

Species Stillwater 3 Pool
0.25

Cdtot 90
0.45

DO M
0.59

BOD 90
0.70

Species Twin and other creeks 1 Pool
0.53

2Zntot M
0.69

BOD 90
0.77

Species Twin and other creeks 2 Pool
0.53

2Zntot M
0.69

2QHEI
0.75

Species Upper 1 Channel
0.26

Cover
0.37

2PbtotM
0.48

2Nitot M
0.55

2Drainage Area
0.66

DELTs GMR 1 %Effl M
0.44

DELTs Lower 1 2TSS M
0.10

NH3 M
0.20

2Hard 90
0.39

2QHEI
0.47

Channel
0.78

DELTs Mad 1 BOD 90
0.41

2Setot 90
0.57

Substrate
0.75

Drainage Area
0.78

2QHEI
0.88

DELTs Stillwater 1 Pbtot M
0.27

Substrate
0.43

2QHEI
0.45

Cover
0.60

DELTs Twin and other creeks 1 NH3 M
0.20

2TOC M
0.40

2Zntot 90
0.54

2Pool
0.69

Tot TUs 90
0.79

DELTs Twin and other creeks 2 NH3 M
0.20

2TOC M
0.40

2Riparian
0.64

2Zntot 90
0.73

2TSS 90
0.79

DELTs Upper 1 TSS M
0.31

2DO M
0.53

Riffle
0.62

2TSS 90
0.68

2Riparian
0.73

a Parameter names are spelled out in Table 1.

and a negative relationship was found with %Effluent (also as
with IBI). In the Lower GMR, 64% of the variance in Species
(richness) was accounted for via a five-variable model that
included Riparian, TSS, Hardness, Selenium, and Drainage

Area. All but median Selenium concentrations were negatively
related to Species. A four-variable model best fit the Species
within the Mad River, where an overall coefficient of deter-
mination of 0.68 was observed, including the parameters Lead,
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Table 4. Means of habitat variables used to derive habitat-based
clusters

Parameter

Cluster

1 2 3 4

QHEIa

Drainage Area
Gradient
Hardness
pH
Sample size

66.51
29.23
17.07

286.61
7.85

149

74.96
692.57

6.74
288.65

7.99
237

51.62
759.90

3.10
293.66

7.86
208

46.75
3,193.55

13.94
145.50

7.45
1

a QHEI 5 qualitative habitat evaluation index.

Table 5. Summary of stepwise regression results for models relating
biological and chemical variables for three habitat-based clusters.

Regression coefficients are in parenthesesa

Re-
sponse Cluster 1 Cluster 2 Cluster 3

IBI %EffM (20.5)
NH3 (253.3)
Cd total (28.4)

R2 5 0.2795

%EfflM (20.48)
DO (0.92)

R2 5 0.2291

DO (0.88)
Total P (25.13)
%EfflM (20.24)
Total Zn (0.005)
R2 5 0.2515

a Parameter names are spelled out in Table 1.

Ammonia, Substrate, and Hardness. For the other three sub-
basins, Stillwater, Twin Creek, and Upper GMR, the first sig-
nificant step was a habitat variable (e.g., Pool, Channel, or
Cover). Further positive relationships of Species with water
chemistry parameters (Cd, TOC, DO, Zn) were observed for
the Stillwater River. The negative correlation with Zinc in the
Twin Creek subbasin should be considered with caution be-
cause it is driven by elevated concentrations at 2 of 19 seg-
ments evaluated.

The spatial distribution of the percent of fish observed with
DELTs within the entire GMR was not as observed for the
other two fish parameters. In this case, DELTs were only el-
evated within the city of Dayton (lowest segments of the Mad
and Upper GMR) and in the Lower GMR. Water chemistry
parameters accounted for the greatest variance in DELTs within
the entire GMR as well as subbasins, unlike that observed for
IBI and Species. Forty-four percent of the DELT variation was
accounted by %Effluent at mean flow for the entire GMR.
With exception to the Lower GMR, the variation of DELTs
within the other four subbasins was small, hence interpretation
of the multiple regressions should be considered with caution.
The DELTs within the lower GMR were found to be associated
with TSS, Ammonia, Hardness, QHEI, and Channel.

Although the purpose of this exercise was to illustrate the
utility of the bottom-up approach in understanding the poten-
tial effects of multiple stressors on receiving water biology, it
was not intended to be a comprehensive assessment of all the
potential effects caused by diverse stressors within the GMR,
such as habitat alterations, toxic effects from combined sewer
overflows, effluent discharge, sediments, and so on. The pur-
pose of exploring this approach was to determine the rela-
tionships of measured habitat and chemical stressors on the
biota and explore the effects of scale (basin vs subbasin) on
the analysis. The principle statistical tool for assaying the
strength of various stressor–response relationships was re-
gression analysis. The best fit regressions were determined for
the subbasin level. In most cases, between 60 and 80% of the
variance of the response variables was addressed with three
to five variables at the subbasin level, whereas less than 30%
was commonly fit when analyzing the entire GMR. Even so,
caution should be exercised so as to not overinterpret the re-
gression results. As discussed before, the variance of %Effluent
in the Lower GMR was low, and, therefore, did not appear as
a significant contributor in the depression of IBI and Species.
However, examination of the map of each of these dependent
variables and DELTs clearly indicated that a relationship exists
with effluent.

The utility of the bottom-up approach is dependent on anal-
ysis of more than one response variable (e.g., IBI), but a set

of variables that can be used together to diagnose effects from
multiple stressors. For instance, toxic influences would be ex-
pected to depress the number of fish taxa observed as well as
IBI, whereas the percent of DELTs may increase. However,
where DELTs do not respond in an inverse manner to that of
species richness and IBI, toxicity as a prime stressor may be
doubted. Depressed species richness as well as elevated DELTs
occurred downstream of Dayton (Lower GMR), where percent
cumulative effluent was the greatest. Although this may seem
to point to municipal effluents as the primary causative agents
of adverse effects in the GMR, this conclusion may not be
warranted because significant percentages of effluent were also
determined for major portions of the Stillwater River and Twin
Creek subbasins, where IBI and Species values were among
the highest recorded in the state of Ohio [8], whereas DELTs
were minimized. Hence, the adverse effects observed down-
stream from Dayton may be due to the discharge of contam-
inants unknown within the contexts of this study (i.e., more
than just municipal effluent), or possibly from the joint action
of effluent discharge and habitat modification (channelization,
impoundments) [8]. If the latter, regression modeling provides
an estimate of this joint action.

We believe that percent cumulative effluent may be useful
for determining stressor source–biological response relation-
ships; however, its best use may be as a screening tool, or
surrogate parameter, that encompasses unknown toxics (as sin-
gle compounds or as a mixture), nutrient effects or flow mod-
ifications. Determining the agents in effluents potentially re-
sponsible for adverse effects within the receiving water en-
vironment may require additional data inputs, such as sediment
chemistry, whole-effluent toxicity test results, and body bur-
dens of suspected chemicals within the receiving water biota.

Top-down approach

Habitat clusters. The cluster analysis of the habitat data
resulted in three moderate-size clusters and a single site. The
clusters are summarized in Table 4. Cluster 1 represented sites
characteristic of headwaters, for example, small drainage areas
and high gradients with moderately good habitat. Clusters 2
and 3 corresponded to sites with larger drainage area but dif-
fered in overall habitat and gradient, with cluster 2 having the
greater mean QHEI score and greater gradients. Hardness and
pH did not contribute toward the separation of clusters 1
through 3; however, they were important in the identification
of cluster 4, where both hardness and pH levels were lower
compared to the other three clusters. Importantly, cluster 4
reflected a single site with a very large drainage area. Stepwise
regression analyses are summarized in Table 5. Overall, the
regressions were weak, with approximately 25% of the vari-
ance of IBI being addressed by water chemistry variables with-
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Table 6. Summary of stepwise regressions using imputed covariance
matrices for each of the habitat-based clustersa

Depen-
dent
variable

Clus-
ter

Step

1 2 3 4

IBI 1 2BOD
0.17

2%Effl M
0.23

2Zinc
0.26

IBI 2 2Effl M
0.15

DO M
0.19

2BOD
0.23

IBI 3 2Zinc
0.15

DO 90
0.30

2%Effl L
0.37

2TSS 90
0.41

a Parameter names are spelled out in Table 1.

Table 8. Summary table on separation of noncluster variables from
biologically based clusters. The greater the F statistic, the greater the

separation due to clusteringa

F statistics

86.22–40.91 27.45–12.45 8.90–3.1 2.6–1.17

QHEI
Drainage Area
Gradient

%Effl M
DO M
TSS M
TotP M
NH3 M

pH M
Zntot 90
%Effl L
Zntot M
TSS 90
Cutot M

Hard M
TotTU 90
Cdtot 90
TotTU M

a Parameter names are spelled out in Table 1.

Fig. 4. Average Euclidean distance between clusters for basins for
which sufficient data were available (i.e., greater than 10 sites).

Table 7. Means of fish metrics used to derive biologically based
clusters

Metric

Cluster

1
(mean)

2
(mean)

3
(mean)

Sunfish (no. sunfish species)
Darters (no. darter species)
Suckers (no. sucker species)
Intols (no. intolerant species)

2.07
0.95
1.04
0.07

3.54
2.12
4.06
1.75

2.73
3.50
2.33
1.12

Tolperc (percent tolerant species)
Topcarn (percent top carnivores)
Omnivor (percent omnivores)

60.80
3.03

31.20

23.31
8.87

24.79

38.86
3.99

19.68
Rdsuckpc (percent round-bodied

suckers) 0.43 16.72 4.25
DELTs (percent deformities, fin ero-

sions, lesions, and tumors) 3.04 2.15 0.36
N 281.00 538.00 356.00

in each of the three main clusters. Across each cluster, the
percent cumulative effluent at mean flow was consistently
identified as a negative influence on IBI. In headwater streams,
cluster 1, ammonia and total cadmium were also identified as
negative influences on IBI. Dissolved oxygen was a positive
influence within both clusters 2 and 3. When imputed co-
variance matrices were used as inputs for the stepwise re-
gressions, BOD became more important in sites with small
drainage areas (cluster 1), followed by percent effluent at mean
flow (Table 6). Effects of imputation were not observed for
cluster 2, whereas zinc, effluent at low flow, and TSS along
with DO 90 addressed 41&percnt: of IBI variation in cluster 3.

Biological clusters. Clusters of fish metric data were used
to ascertain the importance of physical and chemical charac-
teristics on the separation of the clusters. Three clusters were
developed from nine IBI metrics (Table 7). The results suggest
that cluster 1 is associated with poor fish community integrity,
exemplified by a majority (60%) of the taxa sampled being
identified as tolerant species. Further indications of poor biotic
integrity include elevated DELTs, high percentage of omni-
vores (Omnivor), low round-bodied sucker (Rdsuckpc) com-
position, and very low numbers of intolerant fish taxa (Intols).
More robust fish communities correspond to cluster 2, where
greater numbers of intolerant taxa and lower percentages of
tolerant taxa, omnivores, and DELTs were present. Cluster 3
had a higher mean of Intols and Darters, but fewer numbers
of sucker species and round-bodied suckers than in cluster 2.
When evaluated on the variables not used in the cluster analysis
(Table 8), the greatest differences were associated with habitat
variables (QHEI, drainage area, and gradient) followed by
weaker differences due to some of the chemical variables (per-

cent effluent at mean flow, median DO, TSS, total phosphorus).
Hence, to this point, the two different clustering approaches
(habitat- and fish metric-based) have yielded similar interpre-
tations—that although water chemistry and percent effluent
may account for a significant amount of the variation in IBI
throughout the state, the dominating factors seem to be more
oriented to habitat, including drainage area and gradient, with
water chemistry playing a secondary role.

Basin clusters. Clusters based on the correlations of IBI to
QHEI, Drainage area, median Hardness M, and median pH
were determined for basins that had a minimum of 10 obser-
vations per basin. Three clusters were determined at a Eu-
clidean distance of 0.9 (Fig. 4): cluster 1 (1, 2, 4, 5, 9, 11,
17), cluster 2 (14, 15, 19), and cluster 3 (13, 16, 18, 20). In
the first cluster, QHEI and pH were correlated most strongly
with IBI, yielding correlation coefficients of 0.38 and 0.31,
respectively. In cluster 2, drainage area (r 5 20.37) and me-
dian Hardness (r 5 20.37) were most strongly correlated,
whereas in cluster 3 all variables seemed to be correlated with
IBI: QHEI (r 5 0.28), drainage area (r 5 20.35), hardness (r
5 0.47), and pH (r 5 0.34). Figure 5 shows where each of
the basins corresponding to the three clusters occurred. Cluster
1 covered the largest geographical area in the state with basins
located in the northwestern, central, and southeastern parts of
Ohio. Although three basins were identified in cluster 2, they
corresponded to two areas that drain the metroplexes of greater
Dayton–Cincinnati (GMR) and Cleveland (Chagrin River and
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Fig. 5. Location of basin clusters based on correlation matrix of the
index of biotic integrity versus habitat parameters.

Cuyahoga River). The third cluster corresponded to four rivers
within the Lake Erie drainage in the northern portion of the
state. Stepwise regressions of habitat and water chemistry var-
iables to IBI within each basin cluster were determined. In
cluster 1, a three-variable model fit 39% of the variation in
IBI, with BOD M and QHEI contributing 35%. Percent effluent
at mean flow and QHEI addressed 34% of the variance in
cluster 2, whereas a combination of QHEI, BOD M, and DO
90 fit 63% of the variation in IBI in cluster 3. Across each
cluster, QHEI and DO 90 were positively correlated with IBI,
whereas %Effl M and BOD M were negatively related to IBI.

A comparison of results from the various top-down ap-
proaches with the bottom-up approach indicated that as the
geographical dispersion of sampling sites increased (scale in-
creased), the degree of variation in IBI fit by water chemistry
and/or habitat data decreased. In general, between 25 and 40%
of the variation of IBI could be fit to any set of habitat and/
or water chemistry variables using habitat-based, biologically
based, and basin-based clustering methods. This was about the
same goodness of fit as was found for IBI in the GMR (entire
basin) via the bottom-up approach.

CONCLUSIONS

Considering all the analyses conducted, several consisten-
cies were found: quality of habitat, expressed as QHEI, Gra-
dient, and Drainage Area, were generally observed as positive
influences on IBI; in contrast, high percent cumulative effluent
was generally a negative influence on the overall IBI score,
with conventional pollutants such as ammonia and BOD also
negatively correlated with IBI; and metals and total toxic units,
although often found in significant regressions, were incon-
sistantly related to IBI or other fish metrics and, therefore, do

not seem to be significant drivers of IBI over a large geo-
graphical area, although they may be important within the
subbasin level.

Further analyses of the Ohio data sets are ongoing. At pres-
ent, we plan on continuing the bottom-up approach for each
basin in the state using the described river segmentation ap-
proach with the hopes of ascertaining fish and invertebrate
community–response signatures that may be clustered using
significant regression coefficients. These clusters can then be
compared to those briefly described in this paper. We have
also developed a spatially driven data imputation methodology
currently under evaluation that will reduce many of the prob-
lems associated with missing values, as described in this man-
uscript.
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